Indoor Air Quality Impacts of a Peak Load Shedding Strategy for a Large Retail Building
Publication Type
Authors
Abstract
Mock Critical Peak Pricing (CPP) events were implemented in a Target retail store in the San Francisco Bay Area by shutting down some of the building’s packaged rooftop air-handling units (RTUs). Measurements were made to determine how this load shedding strategy would affect the outdoor air ventilation rate and the concentrations of volatile organic compounds (VOCs) in the sales area. Ventilation rates prior to and during load shedding were measured by tracer gas decay on two days. Samples for individual VOCs, including formaldehyde and acetaldehyde, were collected from several RTUs in the morning prior to load shedding and in the late afternoon. Shutting down a portion (three of 11 and five of 12, or 27 and 42%) of the RTUs serving the sales area resulted in about a 30% reduction in ventilation, producing values of 0.50-0.65 air changes per hour. VOCs with the highest concentrations (>10 μg/m3) in the sales area included formaldehyde, 2-butoxyethanol, toluene and decamethylcyclopentasiloxane. Substantial differences in concentrations were observed among RTUs. Concentrations of most VOCs increased during a single mock CPP event, and the median increase was somewhat higher than the fractional decrease in the ventilation rate. There are few guidelines for evaluating indoor VOC concentrations. For formaldehyde, maximum concentrations measured in the store during the event were below guidelines intended to protect the general public from acute health risks.