Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties

Publication Type

Journal Article

Date Published

12/2017

Authors

DOI

Abstract

Layered lithium transition metal oxides, in particular, NMCs (LiNixCoyMnzO2) represent a family of prominent lithium ion battery cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety for electric vehicles and grid storage. Our work has focused on various strategies to improve performance and to understand the limitations to these strategies, which include altering compositions, utilizing cation substitutions, and charging to higher than usual potentials in cells. Understanding the effects of these strategies on surface and bulk behavior and correlating structure–performance relationships advance our understanding of NMC materials. This also provides information relevant to the efficacy of various approaches toward ensuring reliable operation of these materials in batteries intended for demanding traction and grid storage applications.

In this Account, we start by comparing NMCs to the isostructural LiCoO2 cathode, which is widely used in consumer batteries. Effects of changing the metal content (Ni, Mn, Co) upon structure and performance of NMCs are briefly discussed. Our early work on the effects of partial substitution of Al, Fe, and Ti for Co on the electrochemical and bulk structural properties is then covered. The original aim of this work was to reduce the Co content (and thus the raw materials cost) and to determine the effect of the substitutions on the electrochemical and bulk structural properties. More recently, we have turned to the application of synchrotron and advanced microscopy techniques to understand both bulk and surface characteristics of the NMCs. Via nanoscale-to-macroscale spectroscopy and atomically resolved imaging techniques, we were able to determine that the surfaces of NMC undergo heterogeneous reconstruction from a layered structure to rock salt under a variety of conditions. Interestingly, formation of rock salt also occurs under abuse conditions. The surface structural and chemical changes affect the charge distribution, the charge compensation mechanisms, and ultimately, the battery performance. Surface reconstruction, cathode/electrolyte interface layer formation, and oxygen loss are intimately related, making it difficult to disentangle the effects of each of these phenomena. They are driven by the different redox activities of Ni and O on the surface and in the bulk; there is a greater tendency for charge compensation to occur on oxygen anions at particle surfaces rather than on Ni, whereas the Ni in the bulk is more redox active than on the surface. Finally, our latest research efforts are directed toward understanding the thermal properties of NMCs, which is highly relevant to their safety in operating cells.

 

Journal

Accounts of Chemical Research

Volume

51

Year of Publication

2018

Issue

1

ISSN

0001-4842

Organization