Adaptive/Intelligent Control
and Power Management
Reduce Power Dissipation and Consumption

Mahesh Thaker
Mikhail Guz
January 31, 2006
Agenda

• ~ 400W Power System for Server Application
• Conventional Power Conversion Components
 – Key Characteristics
 – Efficiency/Power Losses
• Adaptive/Intelligent Power Conversion Components
 – Key Characteristics
 – Efficiency/Power Losses Savings
• Activity Based Power Management
Block Diagram Of Typical Power System

AC-DC Power Conversion

AC MAINS

Intermediate Voltage Bus

AC-DC Front End

40% Load

DC-DC conversion (POL regulators)

POL

1.2V@90A

POL

1.8V@45A

POL

2.5V@30A

POL

3.3V@15A

Power Consumption app. 313W

Typical 12V

40% Load,
Conventional/Passive Power System Characteristics

• Redundant AC-DC Front Ends
 – 12V intermediate bus
 – Operating ~ 30%-40% capacity
 – Efficiency optimized @ full load (~84%)
 • Typically dominated by Copper (IIR) losses
 – Efficiency compromised @ partial load (~82%)
 • Switching losses, overhead/housekeeping losses
 – Fixed/Passive operating parameters
 • Operating frequency, constant airflow, output conditions, etc
 – Limited/no monitoring capabilities

• DC-DC Converters
 – Fixed/passive operating parameters
 – Limited/no monitoring capabilities
Typical Efficiency of Conventional 12V Front End

Efficiency, %

Output Power, W

220V

110V
Efficiency of Non-Isolated DC-DC at Vin=12V
Power Losses In Conventional Power System

AC MAINS
AC Power app. 439W

AC-DC Front End
AC-DC Power Dissipation app. 79W

40% Load, 82%

Intermediate Voltage Bus

AC-DC Front End

40% Load, 82%

Overall System Efficiency=71.4%

POL Power Dissipation app. 47W

DC-DC
82.5%

1.2V@90A

DC-DC
88%

1.8V@45A

DC-DC
90%

2.5V@30A

DC-DC
92%

3.3V@15A

Power Consumption app. 313W

IBV Power app. 360W

AC Power app. 470W

82%

88%

90%

92%

40% Load, 82%

82.5%

88%

90%

92%
Intelligent/Adaptive Power System

- Redundant / Adaptive AC-DC Front Ends and DC-DC converters
 - Intelligent embedded monitoring and internal controls
 - Digital Embedded Controls and Power Management
 - High level of flexibility for modifying internal operating parameters
 - Dynamic adjustment of internal operating parameters to match application/operating environment
 - Software managed
 - Embedded algorithms for performance optimization
 - User managed software control
 - Optimizes efficiency/key performance over entire load range
 - ~86%-89% from 40%-100% rated load
 - Adaptive drivers minimize dead time and shoot-through
 - Internal monitoring of critical parameters
 - Input/output voltages, load condition, temperature
Efficiency of 12V Front End with Adaptive Controls

![Graph showing efficiency vs. output power for 220V and 110V inputs.](image)
Power Losses in Power System with Adaptive/Intelligent Front End

AC-DC Power Dissipation app. 54W

AC-DC Front End

Intermediate Voltage Bus

POL Power Dissipation app. 47W

DC-DC

82.5%

DC-DC

88%

DC-DC

90%

DC-DC

92%

Power Consumption app. 313W

1.2V@90A

1.8V@45A

2.5V@30A

3.3V@15A

AC MAINS

AC Power app. 414W

40% Load, 87%

AC-DC Front End

IBV Power app. 360W

40% Load, 87%

Overall System Efficiency = 75.7%
Adaptive Control for DC-DC Converters

• There is an optimal operating point for a given set of conditions
• Purpose of adaptive control is to continuously modify performance parameters of a power supply to keep its operation as close to optimal point as possible
• Example: 1.2V output
 – Non-optimized – 12V input, 1MHz switching frequency, standard driver. Efficiency is 80%
 – Optimized - 5V input, 500kHz switching frequency, adaptive driver. Efficiency is 85.5%
 – Power dissipation is reduced by 1/3 by optimizing operating point of the power supply
Efficiency Is A Complex Function Of Operating Conditions

Output Load

Output Voltage

Input Voltage

Switching Frequency
Further Power Reduction With Activity Based Power Management

- Enabled by digital power technology
- Managing System – reduction in both power dissipation and power consumption
 - Modify performance parameters of entire system as a function of system load, supply voltages, and temperature
- Managing Loads – reduction in power consumption
 - Change clock frequency and supply voltage as a function of processor load (DVS)
 - Intelligent control of cooling fans
Activity Based Power Management

SYSTEM PROCESSOR:
1. Calculates load
2. Selects optimal IBV setting for the load, temp, and mains
3. Sets output of AC/DC to maximize system efficiency

AC/DC FRONT END POWER SUPPLY

Efficiency = f(MAins, LOAD, IBV, TEMP)

INTERMEDIATE VOLTAGE BUS

INTERMEDIATE BUS VOLTAGE

CONTINUOUS LOAD MONITORING

REPORTING: VOLTAGE (IBV AND MAINS), AND TEMPERATURE

ADJUSTMENT: INTERMEDIATE BUS VOLTAGE

CONTINUOUS LOAD MONITORING AND ADJUSTMENT

REPORTING: VOLTAGE, CURRENT, AND TEMPERATURE FOR EACH OUTPUT

Z-ONE™ DIGITAL POINT OF LOAD REGULATORS

Efficiency = f(IBV, LOAD, VOUT, TEMP)

INDUSTRY STANDARD I2C COMMUNICATION BUS

Vo1
Vo2
Vo3
Von

AC MAINS

EFFICIENCY = f(IBV, LOAD, VOUT, TEMP)
Supply voltage clock scalable CPUs allow reducing power consumption by varying clock frequency and supply voltage as a function of utilization.
Activity Based Power Management With DVS

SYSTEM PROCESSOR RUNS ACTIVITY-BASED OPTIMIZATION ALGORITHMS

<table>
<thead>
<tr>
<th>POWER DISSIPATION REDUCTION</th>
<th>POWER CONSUMPTION REDUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CALCULATES LOAD</td>
<td>1. DETERMINES CPU UTILIZATION</td>
</tr>
<tr>
<td>2. SELECTS OPTIMAL IBV SETTING FOR THE LOAD, TEMP, AND MAINS</td>
<td>2. SELECTS OPTIMAL CPU CLOCK FREQUENCY</td>
</tr>
<tr>
<td>3. SETS OUTPUT OF AC/DC TO MAXIMIZE SYSTEM EFFICIENCY</td>
<td>3. SETS CPU CLOCK FREQUENCY</td>
</tr>
<tr>
<td></td>
<td>4. DETERMINES AND SETS NEW CPU SUPPLY VOLTAGE</td>
</tr>
</tbody>
</table>

AC/DC FRONT END POWER SUPPLY
Efficiency = f(MAINS, LOAD, IBV, TEMP)

INTERMEDIATE VOLTAGE BUS

Z-ONE™ DIGITAL POINT OF LOAD REGULATORS
Efficiency = f(IBV, LOAD, VOUT, TEMP)

DATA PROCESSING LOADS
Vo1, Vo2, Vo3...

INDUSTRY STANDARD I2C COMMUNICATION BUS

CONTINUOUS MONITORING AND ADJUSTMENT
REPORTING: VOLTAGE, CURRENT, AND TEMPERATURE
ADJUSTMENT: OUTPUT VOLTAGE

CONTINUOUS MONITORING AND ADJUSTMENT
REPORTING: UTILIZATION, CLOCK FREQUENCY, TEMPERATURE
ADJUSTMENT: CLOCK FREQUENCY
Power Savings Summary Per System

<table>
<thead>
<tr>
<th></th>
<th>Power Consumption, Watts</th>
<th>Power Losses, Watts</th>
<th>Overall System Efficiency, %</th>
<th>Annual Cost Savings, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Power System</td>
<td>313</td>
<td>126</td>
<td>71.4</td>
<td>0</td>
</tr>
<tr>
<td>PS with Adaptive AC Front End</td>
<td>313</td>
<td>100</td>
<td>75.7</td>
<td>18</td>
</tr>
<tr>
<td>PS with Adaptive AC FE & POLs</td>
<td>313</td>
<td>91</td>
<td>77.5</td>
<td>25</td>
</tr>
<tr>
<td>PS with Activity Based Power Management</td>
<td>313</td>
<td>86</td>
<td>78.5</td>
<td>29</td>
</tr>
<tr>
<td>PS with Activity Based PM and DVS</td>
<td>292</td>
<td>82</td>
<td>78.1</td>
<td>47</td>
</tr>
</tbody>
</table>

Assumes 75% equipment utilization and $0.11/kW energy cost
Real World Examples Of Power Savings

<table>
<thead>
<tr>
<th>Industry/Location</th>
<th>Power Savings, Watts</th>
<th>Annualized savings, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Office</td>
<td>~325 – 650</td>
<td>~235 – 470</td>
</tr>
<tr>
<td>Campus Environment</td>
<td>~3,200 – 6,500</td>
<td>~2,300 – 4,700</td>
</tr>
<tr>
<td>Data Centers</td>
<td>~32,000 – 65,000</td>
<td>~23,000 – 47,000</td>
</tr>
</tbody>
</table>

Assumes 75% equipment utilization and $0.11/kW energy cost
Conclusions

• Conventional Power Systems are not optimized for reduction of power losses

• System approach to Power Management results in reduction of both power consumption and power dissipation

• Digital Power Management enables users to implement
 – Continuous parameters monitoring, reporting, and adjustment
 – Optimization of operating parameters, including selection of properly rated power supplies
 – Activity based power management
 – Dynamic voltage scaling

• Substantial operating cost savings can be achieved
 - Up to $0.15/Watt of consumed power!
 - ~20% of power loss reduction
Thank You!

This presentation contains Confidential and Proprietary Information that is the property of Power-One, Inc. It may not be duplicated without the consent of Power-One. If you are not the intended recipient, you may not read, copy distribute, or use this information. If you received this presentation in error, please contact the sender and delete all copies.